# Temperature-Aware Test Scheduling for Multiprocessor Systems-On-Chip

David R. Bild, Sanchit Misra, Thidapat Chantem, Prabhat Kumar, Robert P. Dick, X. Sharon Hu, Li Shang, and Alok Choudhary

Department of EECS Northwestern University Evanston, IL 60208, USA Department of CSE University of Notre Dame Notre Dame, IN 46556, USA Department of ECE University of Colorado at Boulder Boulder, CO 80305, USA

November 10, 2008

### Outline

- 1. Introduction
- 2. Power Analysis
- Test Scheduling Motivation Optimal Formulation Experimental Results Heuristic

### Outline

### 1. Introduction

- 2. Power Analysis
- 3. Test Scheduling

### Power Density and Temperature

#### High Temperature

- Process scaling leads to increasing power densities
- Temperature is strongly dependent on power density

#### Reduced Yield

4

- Causes permanent faults
- Accelerates failure processes
- Leads to timing errors

## High Temperatures During Test

#### Power Density During Test

- Higher switching activity (e.g., scan-chain, BIST)
- Lower clock frequency

#### Thermal Environment

- Liquid-cooled chuck
- Thermal compounds generally not used between wafer and chuck

### Temperature-Aware Test Scheduling

#### Goal

6

Minimize total test application time under a constraint on temperature

#### MPSoC Test Scheduling

- Cores can be tested concurrently leading to higher power consumption
- Concurrent testing of adjacent cores leads to thermal hotspots
- Resource conflicts limit the concurrency

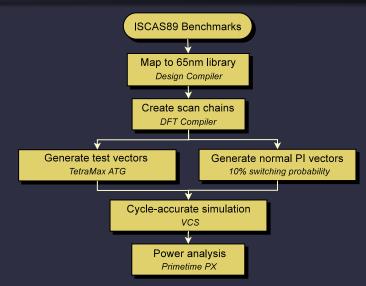
### Outline

### 1. Introduction

- 2. Power Analysis
- 3. Test Scheduling

### Related Work

Little published data comparing power consumptions


- $2.5 \times$  increase for at-speed BIST Y. Zorian (1993)
- $3 \times$  increase for ColdFire microprocessor core B. Pouya and A.L. Crouch (2000)
- 3× increase historically for scan-chain C. Shi and R. Kapur (2004)
- $30 \times$  for some designs

#### Main Contribution

8

 Comparison of normal operation and scan-chain test power consumptions for the ISCAS 89 benchmarks

### Experimental Setup



Bild, Misra, Chantem, Kumar, Dick, Hu, Shang, and Choudhary

9

Temperature-Aware Test Scheduling for MPSoCs

### Analysis of Results

#### Summary

- Test: 26.9% average switching activity
- Normal: 8.5% average switching activity
- Switching Activity:  $4.1 \times$  increase
- Power Consumption:  $1.6 \times$  increase

Test clock frequency needs to be at least half of the normal operating frequency for the power consumption to be higher

#### $4.1 \times$ & $1.6 \times$ Discrepancy

- Clock tree has high power consumption
- Independent of the switching activity
- Similar results seen by Pouya and Crouch (2000)

### When Could High Temperatures Still Be a Problem?

- The test frequency is at least half the normal operating frequency
- The circuit has greater inter-register combinational logic depth than the ISCAS89 circuit
- The circuit is tested in an inferior thermal environment
- Other testing methodologies (e.g., BIST, sequential)

Introduction Optimal Formulation Power Analysis Experimental Results Test Scheduling Heuristic

## Outline

### 1. Introduction

2. Power Analysis

3. Test Scheduling

Motivation Optimal Formulation Experimental Results Heuristic

# Section outline

### Test Scheduling Motivation Optimal Formulation Experimental Results Heuristic

Motivation Optimal Formulation Experimental Results Heuristic

## Ensuring Safe Temperatures

#### Minimize Power Consumption

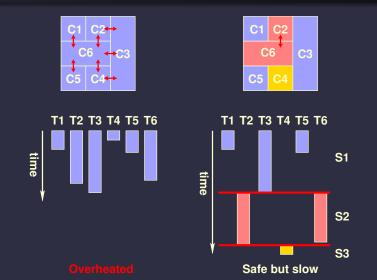
- Test pattern sequence reorganization Flores et al. (1999)
- Test vector reordering Girad et al. (1997)
- MILP-based approached for power-time trade-off analysis -Nourani and Chin (2004)

#### Constrain Temperature, Not Power

- Power profiles have spatial variation
- Temperatures are spatially correlated
- Concurrent testing of adjacent cores may not be safe, but non-adjacent cores might be safe

Motivation Optimal Formulation Experimental Results Heuristic

# Existing Work


#### Clique-Set Technique

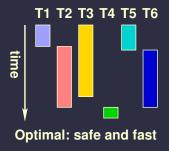
Rosinger, Al-Hashimi, Chakrabarty minimized SoC test time under temperature and resource constraints (2006)

- Identify clique sets of compatible tests
- Choose the covering set that minimizes the total time

Motivation Optimal Formulation Experimental Results Heuristic

## Clique Set Weakness




16 Bild, Misra, Chantem, Kumar, Dick, Hu, Shang, and Choudhary

Temperature-Aware Test Scheduling for MPSoCs

Motivation Optimal Formulation Experimental Results Heuristic

## Arbitrary Start Times





Motivation Optimal Formulation Experimental Results Heuristic

## Section outline

#### 3. Test Scheduling

Motivation Optimal Formulation Experimental Results Heuristic

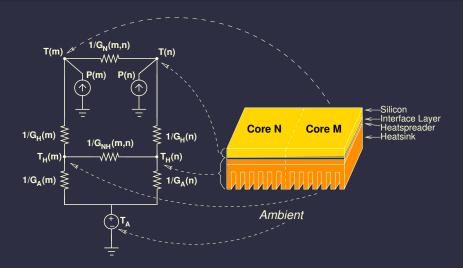
Motivation Optimal Formulation Experimental Results Heuristic

# Problem Definition

#### Given:

- $\ensuremath{\mathcal{C}}$  , the set of cores to test
- E(c), the test execution time for each core
- $\Gamma(c_1, c_2)$ , resource conflicts between cores
- *T<sub>bound</sub>*, maximum allowable peak temperature

### Find:


•  $t_s(c)$ , start time for each test

### Such That:

- If  $\Gamma(c_1,c_2)=1$ ,  $c_1$  and  $c_2$  do not execute simultaneously
- $T_{max}$ , die peak temperature, is less than  $T_{bound}$
- The latest finish time,  $max_{c\in\mathcal{C}}t_s(c)+E(c)$ , is minimized

Motivation Optimal Formulation Experimental Results Heuristic

# Thermal Model (1/2)



Motivation Optimal Formulation Experimental Results Heuristic

# Thermal Model (2/2)

#### **Dynamic Effects**

- Heat capacity is not modeled
- Valid as long as test sequence times are relatively long (e.g., milliseconds)

#### Phased Steady-State

- Temperature can only increase when test sequences start
- Only evaluate the temperature profile at these times

#### **Temperature Equations**

- For this model, the system is linear
- Can be integrated into an MILP formulation

Motivation Optimal Formulation Experimental Results Heuristic

## **MILP** Formulation

- Phased steady-state and linear temperature model allowed for integration in an MILP formulation
- Developed an MILP formulation in AMPL specification language
- Suitable for small problem instances

Motivation Optimal Formulation Experimental Results Heuristic

## Section outline

#### 3. Test Scheduling

Motivation Optimal Formulation Experimental Results Heuristic

Motivation Optimal Formulation Experimental Results Heuristic

## Experimental Setup

### **Optimal Solution**

- Solved using AMPL and CPLEX
- Same set of benchmarks as Rosinger, Al-Hashimi, and Chakrabarty
- Five different temperature bounds to show the discontinuous relationship between temperature bound and optimal schedule length

#### Comparison with Clique-Set

- Implemented the clique-set technique in an MILP using our thermal model
- Solved for the same set of benchmarks and temperature bounds

Motivation Optimal Formulation Experimental Results Heuristic

### Table of Results



Motivation Optimal Formulation Experimental Results Heuristic

## Summary of Results

#### Summary

- 10.8% average improvement
- 36.7% maximum improvement

#### Analysis

- For most designs, the schedule is limited only by resource conflicts
- For system\_l, no improvement for any temperature because it is severely resource constrained

Motivation Optimal Formulation Experimental Results Heuristic

### Extensions to the Model

#### Test Sequence Granularity

- Real cores will have a finer test sequence granularity
- Our technique can handle this with no modification
  - Split each test set into atomic subsequences
  - 2 Add resource conflicts between atomic subsequences
  - Schedule as separate tests

#### Physical ATE Limitations

- Automated Test Equipment will have physical resource limitations
- For example, number of probe pins available
- · Easily handled by adding constraints

Motivation Optimal Formulation Experimental Results Heuristic

## Section outline

### 3. Test Scheduling

Motivation Optimal Formulation Experimental Results Heuristic

Motivation Optimal Formulation Experimental Results Heuristic

### Need for Heuristic

- $\mathcal{NP}\text{-hard}$  by reduction from task scheduling
- Can only optimally solve small problem instances
- Design muresan\_20, with 20 cores, took 30 minutes

Motivation Optimal Formulation Experimental Results Heuristic

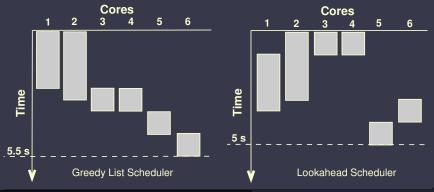

# List Scheduler

### List Scheduler Intuition

- Schedule high temperature impact tests first
- Maximize the chance that a temperature-compatible test will exist to schedule concurrently

#### Problem

Ignores future effects of resource conflicts




Motivation Optimal Formulation Experimental Results Heuristic

## Look-Ahead Scheduler

#### Intuition

- Examine future impacts by growing groups of concurrent cores
- Schedule the seed from the best group



31 Bild, Misra, Chantem, Kumar, Dick, Hu, Shang, and Choudhary

Temperature-Aware Test Scheduling for MPSoCs

Motivation Optimal Formulation Experimental Results Heuristic

# Heuristic

#### Algorithm

- 1 Ensure all cores can be scheduled alone
- 2 Select legal cores as seeds
- Build groups using list scheduler (tests ordered by increasing temperature)
- 4 Schedule the seed with the largest group

#### Runtime

- Solve phased-steady state thermal model:  ${\bf A}\times {\cal T}+B=0$  in  ${\cal O}(|{\cal C}|^2)$
- Total runtime:  $\mathcal{O}(|\mathcal{C}|^5)$

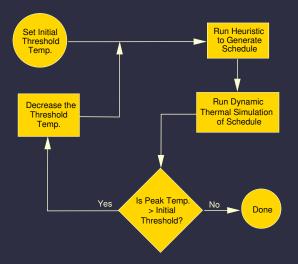
# Experimental Results (1/2)

| Design     | Threshold | Optimal         | Heuristic       | Increase Over |
|------------|-----------|-----------------|-----------------|---------------|
|            | Temp (°C) | Test Length (s) | Test Length (s) | Optimal (%)   |
| asic_z     | 55        | 0.204           | 0.209           | 2.5           |
| asic_z     | 56        | 0.204           | 0.204           | 0.0           |
| asic_z     | 57        | 0.191           | 0.191           | 0.0           |
| kime       | 49        | 3.180           | 3.180           | 0.0           |
| kime       | 50        | 3.180           | 3.180           | 0.0           |
| kime       | 51        | 3.180           | 3.180           | 0.0           |
| muresan_10 | 49        | 1.900           | 1.900           | 0.0           |
| muresan_10 | 50        | 1.900           | 1.900           | 0.0           |
| muresan_10 | 51        | 1.900           | 1.900           | 0.0           |
| muresan_20 | 73        | 3.600           | 4.000           | 11.1          |
| muresan_20 | 74        | 3.600           | 3.600           | 0.0           |
| muresan_20 | 75        | 3.600           | 3.600           | 0.0           |
| system_l   | 75        | 2.880           | 2.880           | 0.0           |
| system_l   | 76        | 2.880           | 2.880           | 0.0           |
| system_l   | 77        | 2.880           | 2.880           | 0.0           |
| system_s   | 60        | 8.448           | 8.448           | 0.0           |
| system_s   | 61        | 8.448           | 8.448           | 0.0           |
| system_s   | 62        | 8.448           | 8.448           | 0.0           |

Motivation Optimal Formulation Experimental Results Heuristic

# Experimental Results (2/2)

#### Summary


- Within 0.5% of optimal average
- Not worse than 11.1%
- Always as good as or better than existing prior work
- 10.5% better on average

#### Runtime

- 10.5 s for all 30 problem instances
- 0.3 s per instance on average

Motivation Optimal Formulation Experimental Results Heuristic

### Dynamic Thermal Effects



Motivation Optimal Formulation Experimental Results Heuristic

# Conclusions

#### Power Analysis

- Compared the normal mode and test mode power consumptions of the ISCAS89 benchmarks
- Found a 4.1× increase in switching activity lead to a  $1.6 \times$  increase in power consumption

### Test Scheduling

- Developed an optimal MILP formulation for MPSoC test scheduling
- Developed a heuristic which can quickly generate near optimal solutions
- Test schedule length improved by 10.8% over best existing approach

Motivation Optimal Formulation Experimental Results Heuristic

### Acknowledgments

- We would like to thank Paul Rosinger and Bashir M. Al-Hashimi from the University of Southampton and Krishnendu Chakrabarty from Duke University for their advice and access to their benchmarks.
- We would also like to acknowledge Niraj K. Jha from Princeton University and Gokhan Memik from Northwestern University for their advice and support.
- This work is supported in part by the SRC under award 2007-TJ-1589 and in part by the NSF under awards CCF-0702761, CNS-0347941, CNS-0410771, CNS-0404341, IIS-0536994, and CCF-0444405.

Motivation Optimal Formulation Experimental Results Heuristic

# Questions

# Thank You!

38 Bild, Misra, Chantem, Kumar, Dick, Hu, Shang, and Choudhary Temperature-Aware Test Scheduling for MPSoCs